Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Noncoding RNA Res ; 9(3): 811-830, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38590433

RESUMO

Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.

2.
Cell Commun Signal ; 22(1): 219, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589887

RESUMO

BACKGROUND: Prostate cancer (PCa) is a prevalent malignancy in men worldwide, ranking as the second leading cause of cancer-related death in Western countries. Various PCa hormone therapies, such as androgen receptor (AR)-antagonists or supraphysiological androgen level (SAL) reduce cancer cell proliferation. However, treated cells may influence the growth of neighboring cells through secreted exosomes in the tumor microenvironment (TME). Here, the change of protein content of exosomes secreted from PCa cells through treatment with different AR-antagonists or SAL has been analyzed. METHODS: Isolation of exosomes via ultracentrifugation of treated human PCa LNCaP cells with AR-agonist and various AR-antagonists; analysis of cellular senescence by detection of senescence associated beta galactosidase activity (SA ß-Gal); Western blotting and immunofluorescence staining; Mass spectrometry (MS-spec) of exosomes and bioinformatic analyses to identify ligand-specific exosomal proteins. Growth assays to analyze influence of exosomes on non-treated cells. RESULTS: MS-spec analysis identified ligand-specific proteins in exosomes. One thousand seventy proteins were up- and 52 proteins downregulated by SAL whereas enzalutamide upregulated 151 proteins and downregulated 42 exosomal proteins. The bioinformatic prediction indicates an up-regulation of pro-proliferative pathways. AR ligands augment hub factors in exosomes that include AKT1, CALM1, PAK2 and CTNND1. Accordingly, functional assays confirmed that the isolated exosomes from AR-ligand treated cells promote growth of untreated PCa cells. CONCLUSION: The data suggest that the cargo of exosomes is controlled by AR-agonist and -antagonists and distinct among the AR-antagonists. Further, exosomes promote growth that might influence the TME. This finding sheds light into the complex interplay between AR signaling and exosome-mediated communication between PCa cells.


Assuntos
Exossomos , Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Receptores de Andrógenos , Receptores Androgênicos/metabolismo , Exossomos/metabolismo , Ligantes , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Androgênios , Microambiente Tumoral
3.
Pathol Res Pract ; 255: 155188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330620

RESUMO

KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Longo não Codificante/genética
4.
Theranostics ; 14(2): 714-737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169509

RESUMO

Rationale: Current therapies for metastatic osseous disease frequently fail to provide a durable treatment response. To date, there are only limited therapeutic options for metastatic prostate cancer, the mechanisms that drive the survival of metastasis-initiating cells are poorly characterized, and reliable prognostic markers are missing. A high aldehyde dehydrogenase (ALDH) activity has been long considered a marker of cancer stem cells (CSC). Our study characterized a differential role of ALDH1A1 and ALDH1A3 genes as regulators of prostate cancer progression and metastatic growth. Methods: By genetic silencing of ALDH1A1 and ALDH1A3 in vitro, in xenografted zebrafish and murine models, and by comparative immunohistochemical analyses of benign, primary tumor, and metastatic specimens from patients with prostate cancer, we demonstrated that ALDH1A1 and ALDH1A3 maintain the CSC phenotype and radioresistance and regulate bone metastasis-initiating cells. We have validated ALDH1A1 and ALDH1A3 as potential biomarkers of clinical outcomes in the independent cohorts of patients with PCa. Furthermore, by RNAseq, chromatin immunoprecipitation (ChIP), and biostatistics analyses, we suggested the molecular mechanisms explaining the role of ALDH1A1 in PCa progression. Results: We found that aldehyde dehydrogenase protein ALDH1A1 positively regulates tumor cell survival in circulation, extravasation, and metastatic dissemination, whereas ALDH1A3 plays the opposite role. ALDH1A1 and ALDH1A3 are differentially expressed in metastatic tumors of patients with prostate cancer, and their expression levels oppositely correlate with clinical outcomes. Prostate cancer progression is associated with the increasing interplay of ALDH1A1 with androgen receptor (AR) and retinoid receptor (RAR) transcriptional programs. Polo-like kinase 3 (PLK3) was identified as a transcriptional target oppositely regulated by ALDH1A1 and ALDH1A3 genes in RAR and AR-dependent manner. PLK3 contributes to the control of prostate cancer cell proliferation, migration, DNA repair, and radioresistance. ALDH1A1 gain in prostate cancer bone metastases is associated with high PLK3 expression. Conclusion: This report provides the first evidence that ALDH1A1 and PLK3 could serve as biomarkers to predict metastatic dissemination and radiotherapy resistance in patients with prostate cancer and could be potential therapeutic targets to eliminate metastasis-initiating and radioresistant tumor cell populations.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Peixe-Zebra/metabolismo , Linhagem Celular Tumoral , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Neoplasias da Próstata/genética , Biomarcadores , Família Aldeído Desidrogenase 1 , Retinal Desidrogenase
5.
Front Oncol ; 13: 1268519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023204
6.
J Cell Mol Med ; 27(19): 2970-2982, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639523

RESUMO

Despite many advances, prostate cancer (PCa) is still the second most frequently diagnosed cancer and fifth leading cause of cancer death in men worldwide. So far, the promising field of onco-immunology has not yet provided a satisfactory treatment option for PCa. Here we show that the ex vivo expansion and activation of cytokine-induced killer (CIK) cells isolated from primary peripheral blood mononuclear cells induce immune-mediated apoptosis in both human PCa LNCaP and C4-2 cells. Interestingly, pretreating LNCaP and C4-2 cells with either androgen or the androgen receptor (AR) antagonist enzalutamide mediates resistance to this immunogenic attack. This is associated with a reduction of both total cell loss and apoptosis levels suggesting one possible mechanism blunting onco-immunological activity. The data also suggest that secreted factors from AR ligand-treated PCa cell suppress lymphocyte proliferation. Further, we analysed immune-mediated killing activity using conditioned media from LNCaP and C4-2 treated cells. The obtained data suggest that the conditioned media from PCa treated cells does not influence a measurable lymphocyte-mediated apoptosis. However, analysing clonal expansion of activated lymphocytes, the androgen-derived conditioned media suppresses lymphocyte proliferation/expansion suggesting inhibition of onco-immunological activity by pretreatment of PCa cells with AR ligands.

7.
Mil Med Res ; 10(1): 32, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460924

RESUMO

Clustered regulatory interspaced short palindromic repeats (CRISPR) has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade. In the study of cancer, the CRISPR/CRISPR-associated protein (Cas) system opens new avenues into issues that were once unknown in our knowledge of the noncoding genome, tumor heterogeneity, and precision medicines. CRISPR/Cas-based gene-editing technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs (miRNAs). However, the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities. This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy. Furthermore, we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Neoplasias/genética , Neoplasias/terapia
8.
Urol J ; 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37245085

RESUMO

Prostate cancer is among the most central sources of cancer-related mortalities. In order to find novel candidates for therapeutic strategies in this kind of cancer, we developed an in-silico method for identification of competing endogenous RNA network. According to the microarray data analyses between prostate tumor and normal specimens, we attained 1312 differentially expressed (DE)mRNAs, including 778 down-regulated DEmRNAs (such as CXCL13 and BMP5) and 584 up-regulated DEmRNAs (such as OR51E2 and LUZP2), 39 DElncRNAs, including 10 down-regulated DElncRNAs (such as UBXN10-AS1 and FENDRR) and 29 up-regulated DElncRNAs (such as PCA3 and LINC00992) and 10 DEmiRNAs, including 2 down-regulated DEmiRNAs (such as MIR675 and MIR1908) and 8 up-regulated DEmiRNAs (such as MIR6773 and MIR4683). We constructed the ceRNA network between these transcripts. We also evaluated the related signaling pathways and the significance of these RNAs in prediction of survival of patients with prostate cancer. This study provides novel candidates for construction of specific treatment routes for prostate cancer.

9.
Front Oncol ; 13: 1123101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025585

RESUMO

Long non-coding RNAs (lncRNAs) are regulatory transcripts with essential roles in the pathogenesis of almost all types of cancers, including prostate cancer. They can act as either oncogenic lncRNAs or tumor suppressor ones in prostate cancer. Small nucleolar RNA host genes are among the mostly assessed oncogenic lncRNAs in this cancer. PCA3 is an example of oncogenic lncRNAs that has been approved as a diagnostic marker in prostate cancer. A number of well-known oncogenic lncRNAs in other cancers such as DANCR, MALAT1, CCAT1, PVT1, TUG1 and NEAT1 have also been shown to act as oncogenes in prostate cancer. On the other hand, LINC00893, LINC01679, MIR22HG, RP1-59D14.5, MAGI2-AS3, NXTAR, FGF14-AS2 and ADAMTS9-AS1 are among lncRNAs that act as tumor suppressors in prostate cancer. LncRNAs can contribute to the pathogenesis of prostate cancer via modulation of androgen receptor (AR) signaling, ubiquitin-proteasome degradation process of AR or other important signaling pathways. The current review summarizes the role of lncRNAs in the evolution of prostate cancer with an especial focus on their importance in design of novel biomarker panels and therapeutic targets.

10.
Front Cell Dev Biol ; 11: 1124615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875771

RESUMO

LncRNA prostate androgen-regulated transcript 1 (PART1) is an important lncRNA in the carcinogenesis whose role has been firstly unraveled in prostate cancer. Expression of this lncRNA is activated by androgen in prostate cancer cells. In addition, this lncRNA has a role in the pathogenesis intervertebral disc degeneration, myocardial ischemia-reperfusion injury, osteoarthritis, osteoporosis and Parkinson's disease. Diagnostic role of PART1 has been assessed in some types of cancers. Moreover, dysregulation of PART1 expression is regarded as a prognostic factor in a variety of cancers. The current review provides a concise but comprehensive summary of the role of PART1 in different cancers and non-malignant disorders.

11.
Pathol Res Pract ; 243: 154346, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746036

RESUMO

Recent decade has seen a tremendous progress in identification of the role of different long non-coding RNAs (lncRNAs) in human pathologies. ADAMTS9-AS2 is an example of lncRNAs with different roles in human disorders. It is mostly acknowledged as a tumor suppressor lncRNA in different types of cancers. However, it has been reported to be up-regulated in tongue squamous cell carcinoma, salivary adenoid cystic carcinoma and glioblastoma. Moreover, ADAMTS9-AS2 is possibly involved in the pathoetiology of pulpitis, acute ischemic stroke, type 2 diabetes and its complications. This lncRNA sponges miR-196b-5p, miR-223-3p, miR-130a-5p, miR-600, miR-223-3p, miR-27a-3p, miR-32, miR-143-3p, miR-143-3p and miR-182-5p in order to regulate downstream mRNAs. This review aims at summarization of the role of ADAMTS9-AS2 in different disorders with a particular focus on its diagnostic and prognostic values.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus Tipo 2 , AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Neoplasias da Língua , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Proteína ADAMTS9/genética
12.
Cells ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497036

RESUMO

The construction of a competing endogenous RNA (ceRNA) network is an important step in the identification of the role of differentially expressed genes in cancers. In the current research, we used a number of bioinformatics tools to construct the ceRNA network in prostate cancer and identify the importance of these modules in predicting the survival of patients with this type of cancer. An assessment of microarray data of prostate cancer and normal samples using the Limma package led to the identification of differential expressed (DE) RNAs that we stratified into mRNA, lncRNA, and miRNAs, resulting in 684 DEmRNAs, including 437 downregulated DEmRNAs (such as TGM4 and SCGB1A1) and 241 upregulated DEmRNAs (such as TDRD1 and CRISP3); 6 DElncRNAs, including 1 downregulated DElncRNA (H19) and 5 upregulated DElncRNAs (such as PCA3 and PCGEM1); and 59 DEmiRNAs, including 30 downregulated DEmiRNAs (such as hsa-miR-1274a and hsa-miR-1274b) and 29 upregulated DEmiRNAs (such as hsa-miR-1268 and hsa-miR-1207-5p). The ceRNA network contained a total of 5 miRNAs, 5 lncRNAs, and 17 mRNAs. We identified hsa-miR-17, hsa-miR-93, hsa-miR-150, hsa-miR-25, PART1, hsa-miR-125b, PCA3, H19, RND3, and ITGB8 as the 10 hub genes in the ceRNA network. According to the ROC analysis, the expression levels of 19 hub genes showed a high diagnostic value. Taken together, we introduce a number of novel promising diagnostic biomarkers for prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
13.
Cell Biosci ; 12(1): 200, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522745

RESUMO

BACKGROUND: Prostate cancer (PCa) is an age-related malignancy in men with a high incidence rate. PCa treatments face many obstacles due to cancer cell resistance and many bypassing mechanisms to escape therapy. According to the intricacy of PCa, many standard therapies are being used depending on PCa stages including radical prostatectomy, radiation therapy, androgen receptor (AR) targeted therapy (androgen deprivation therapy, supraphysiological androgen, and AR antagonists) and chemotherapy. Most of the aforementioned therapies have been implicated to induce cellular senescence. Cellular senescence is defined as a stable cell cycle arrest in the G1 phase and is one of the mechanisms that prevent cancer proliferation. RESULTS: In this review, we provide and analyze different mechanisms of therapy-induced senescence (TIS) in PCa and their effects on the tumor. Interestingly, it seems that different molecular pathways are used by cancer cells for TIS. Understanding the complexity and underlying mechanisms of cellular senescence is very critical due to its role in tumorigenesis. The most prevalent analyzed pathways in PCa as TIS are the p53/p21WAF1/CIP1, the p15INK4B/p16INK4A/pRb/E2F/Cyclin D, the ROS/ERK, p27Kip1/CDK/pRb, and the p27Kip1/Skp2/C/EBP ß signaling. Despite growth inhibition, senescent cells are highly metabolically active. In addition, their secretome, which is termed senescence-associated secretory phenotype (SASP), affects within the tumor microenvironment neighboring non-tumor and tumor cells and thereby may regulate the growth of tumors. Induction of cancer cell senescence is therefore a double-edged sword that can lead to reduced or enhanced tumor growth. CONCLUSION: Thus, dependent on the type of senescence inducer and the specific senescence-induced cellular pathway, it is useful to develop pathway-specific senolytic compounds to specifically targeting senescent cells in order to evict senescent cells and thereby to reduce SASP side effects.

14.
Pathol Res Pract ; 240: 154223, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403313

RESUMO

PCGEM1 Prostate-Specific Transcript is an lncRNA participating in the carcinogenesis process in different tissues. The gene coding this lncRNA is located on chr2:192,749,008-192,783,952 (GRCh38/hg38), plus strand and has 34,945 bases. In addition to prostate cancer, it has been shown to influence progression of cervical, endometrial, gastric, ovarian, hepatocellular and renal cancers. Functionally, PCGEM1 regulates activity of a number of molecular axes, namely miR-642a-5p/LGMN, miR-182/FBXW11, miR-129-5p/STAT3, miR-129-5p/P4HA2, miR-433-3p/FGF2, miR-539-5p/CDK6, miR-129-5p/ETV1, miR-433-3p/WTAP, miR-590-3p/SOX11 and miR-506-3p/TRIAP1. Moreover, it has a regulatory effect on RhoA, NF-κB and ß-catenin/TCF signaling pathways. We have designed this literature search to collect all relevant data about the function of PCGEM1 in the carcinogenesis.


Assuntos
Neoplasias Renais , MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , Carcinogênese/genética , MicroRNAs/genética , Peptídeos e Proteínas de Sinalização Intracelular
15.
Pathol Res Pract ; 240: 154210, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410172

RESUMO

NR2F1-AS1 is a natural antisense transcript with prominent roles in the carcinogenesis. It acts as an oncogene in almost all types of cancers except for cervical and colorectal cancers. It can act as a molecular sponge for miR-17, miR-371a-3p, miR-363, miR-29a-3p, miR-493-5p, miR-190a, miR-140, miR-642a, miR-363, miR-493-5p, miR-483-3p, miR-485-5p, miR-146a-5p, miR-877-5p, miR-338-3 P and miR-423-5p to influence expression of several cancer-related genes. Thus, the sponging role of NR2F1-AS1 is the most appreciated route of its contribution in the carcinogenesis. In addition, NR2F1-AS1 affects activity of IGF-1/IGF-1R/ERK, PI3K/AKT/GSK-3ß and Hedgehog pathways. The current narrative review aims at summarization of the results of studies that highlighted the role of NR2F1-AS1 in the carcinogenesis.


Assuntos
MicroRNAs , Neoplasias , Humanos , Carcinogênese/genética , Fator I de Transcrição COUP , Glicogênio Sintase Quinase 3 beta , Proteínas Hedgehog , Neoplasias/genética , Fosfatidilinositol 3-Quinases , RNA Antissenso/metabolismo
16.
Cells ; 11(22)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36429005

RESUMO

Long Intergenic Non-Protein Coding RNA 665 (LINC00665) is an RNA gene located on the minus strand of chromosome 19. This lncRNA acts as a competing endogenous RNA for miR-4458, miR-379-5p, miR-551b-5p, miR-3619-5p, miR-424-5p, miR-9-5p, miR-214-3p, miR-126-5p, miR-149-3p, miR-379-5p, miR-665, miR-34a-5p, miR-186-5p, miR-138-5p, miR-181c-5p, miR-98, miR-195-5p, miR-224-5p, miR-3619, miR-708, miR-101, miR-1224-5p, miR-34a-5p, and miR-142-5p. Via influencing expression of these miRNAs, it can enhance expression of a number of oncogenes. Moreover, LINC00665 can influence activity of Wnt/ß-Catenin, TGF-ß, MAPK1, NF-κB, ERK, and PI3K/AKT signaling. Function of this lncRNA has been assessed through gain-of-function tests and/or loss-of-function studies. Furthermore, diverse research groups have evaluated its expression levels in tissue samples using microarray and RT-qPCR techniques. In this manuscript, we have summarized the results of these studies and categorized them in three sections, i.e., cell line studies, animal studies, and investigations in clinical samples.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Transdução de Sinais/genética
17.
Cancer Cell Int ; 22(1): 325, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266723

RESUMO

The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.

18.
Cancer Cell Int ; 22(1): 323, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258195

RESUMO

Exosomes are naturally occurring nanosized particles that aid intercellular communication by transmitting biological information between cells. Exosomes have therapeutic efficacy that can transfer their contents between cells as natural carriers. In addition, the exosomal contents delivered to the recipient pathological cells significantly inhibit cancer progression. However, exosome-based tumor treatments are inadequately precise or successful, and various challenges should be adequately overcome. Here, we discuss the significant challenges that exosomes face as drug carriers used for therapeutic targets and strategies for overcoming these challenges in order to promote this new incoming drug carrier further and improve future clinical outcomes. We also present techniques for overcoming these challenges.

19.
Cancer Cell Int ; 22(1): 272, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056353

RESUMO

ING genes belong to family of tumor suppressor genes with regulatory functions on cell proliferation, apoptosis, and cellular senescence. These include a family of proteins with 5 members (ING1-5), which are downregulated in human malignancies and/or affected by pathogenic mutations. ING proteins are highly evolutionarily conserved proteins containing several domains through which bind to chromatin structures by exerting their effects as readers of histone modification marks, and also binding to proteins like p53 involved in biological processes such as cell cycle regulation. Further, they are known as subunits of histone acetylation as well as deacetylation complexes and so exert their regulatory roles through epigenetic mechanisms. Playing role in restriction of proliferative but also invasive potentials of normal cells, INGs are particularly involved in cancer development and progression. However, additional studies and experimental confirmation are required for these models. This paper highlights the potential impact that INGs may have on the development of human cancer and explores what new information has recently arise on the functions of ING genes.

20.
Cancer Cell Int ; 22(1): 258, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974340

RESUMO

Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...